
Cognitive Engineering meets Requirements Engineering

Bridging the Traceability Gap

Alexandra Mazak
Junior Research Studio Cognitive Engineering (CoE)

Research Studios Austria Forschungsgesellschaft
Vienna, Austria

alexandra.mazak@researchstudios.at

Horst Kargl

SparxSystems Software GmbH
Vienna, Austria

horst.kargl@sparxsystems.eu

Abstract—Support for various stakeholders (customer, project
manager, system architect, requirements engineer) involved in
the design and management of large software systems is
needed since frequently, misinterpretations occur already
when specifying customer requirements into system
requirements. This problem is mainly caused by the various
perspectives and intentions of the involved parties that may
lead to diverging interpretations during said process.
Therefore, the focus of our work in progress is on the
requirements engineers when transforming customer
requirements into system requirements. There is still a gap to
trace design decisions especially at this early stage of the
system development life cycle. We introduce a heuristic-based
approach in order to make a contribution to bridge this gap.
We propose to consider the requirements engineer’s “cognitive
perspective” on traceability links by a heuristic-based
weighting procedure that can be performed during the design
process. We enhance the established relationship or
traceability matrix to make it possible for requirements
engineers to annotate their informal knowledge to the linkage
(i.e., visualized realizations) in that matrix.

Keywords-Requirements management; requirements
traceability; cognitive engineering; traceability matrix; design
decisions.

I. INTRODUCTION

There is a variety of stakeholders involved in large
software projects, each having a different set of goals and
priorities [9]. Generally, requirements are prioritized by
stakeholders (e.g., based on the software projects’ purpose,
certain functionalities which should be targeted by the
system). Various methods and supporting tools exist for
guiding this process of requirements’ prioritization. What we
are missing is another prioritization when linking customer
requirements to system requirements and system
requirements to design artifacts (i.e., model components) in
the specification task. Misinterpretations at this stage of a
software project are resulting from misconceived or
misvalued linking. Validation continues to be a “big pain”
due to the lack of trusted documentation of traceability
drives validation teams to leave no doubt (aka double or
triple effort). There is a multitude of tools (e.g., Rational
DOORS [12]) by which requirement lifecycle management
is supported. Often, tools produce non- or less compelling

documentation [13]. However, experience has shown that a
“distributed traceability of requirements” guided by external
tools or methods, which means that it is not integrated in the
system’s architecture design process itself, is often error-
prone [13].

We propose focusing on the requirements engineers’
informal knowledge when design decisions are made during
the specification task of customer requirements. According
to the used modeling language a certain traceability link can
be used (realization in UML [2], satisfy in SysML [3]).
Generally, a trace chain is constructed through linking by
which an impact analysis can be made. Mainly, such
information is presented in form of a matrix called
relationship matrix. In Fig. 1, which represents an excerpt of
a relationship matrix from the tool Enterprise Architect (EA)
[13], the linkage is visualized in form of arrows in the cells.
This type of linking merely express for instance that Receive
Orders is realized by two system artifacts REQ019 and
REQ032 (e.g., Fig. 1). It cannot be derived to what extent the
realization is proceeded, or the system requirements’ level of
utility to fulfill this customer requirement. Generally, a
certain customer requirement is covered by more than a
single system component and not each component has the
same relevance to realize that requirement within the
system’s architecture; just as customer requirements do not
have equal prioritizations. Thus, each system component has
a different level of utility (relevance).

Figure 1. Relationship matrix in EA.

512Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

In the early past, methods have emerged by which
informal knowledge of the original engineers can be
annotated to the model itself, as for example presented in
the field of Ontology Alignment in [7][8]. There the
modelers’ intention involved during the design process, that
is modeler’s cognition or cognitive perspective, is made
visible to users.

Currently, there is no tool support to requirements
engineers in order to aid them to make their informal
knowledge visible. This open issue motivated us to work on
an heuristic-based approach to bridge the traceability gap at
the early stage of system design that is of commercial
interest, too.

II. BACKGROUND

A. Requirements Traceability

Requirements traceability in all stages of the system
development life cycle is an important field of requirements
management. Gotel and Finkelstein [4] define requirements
traceability as “the ability to describe and follow the life of a
requirement, in both a forward and backward direction, i.e.,
from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of
ongoing refinement and iteration in any of these phases”.
The authors differentiate between pre-requirements
specification (pre-RS) traceability and post-requirements
(post-RS) specification traceability. The first refers to those
aspects of a requirement’s life prior to inclusion in the
specification task (e.g., when stakeholders prioritize
requirements depending on their expectations they place on
the system); whereas the latter refers to those aspects that
result from inclusion in the requirement’s specification [4].

In our work in progress, we focus on post-RS traceability
by which system components and their relations to certain
customer requirements are considered. Today, requirements
traceability is a key factor in the project management of
large-scale systems and it plays an important role in the
quality control of software engineering processes [9]. It acts
as an indicator to define the system’s maturity of
development [8]. The aim is to support reliable, up to date,
and high-quality traceability—right from the start.

B. Requirements Traceability Matrix

Validation pain can be reduced when using the
traceability matrix [6]. This is a kind of “completeness
indicator” by which the relationships among requirements
and artifacts can be traced. It is an aid to determine the
complexity of dependencies. There are tools by which a
graphical as well as a textual traceability is supported to
engineers. For example, in the tool Enterprise Architect the
relationship matrix is a spreadsheet display of relationships
between different sets of model elements (e.g., Fig. 1). A
source package and a target package, the relationship type,
and the direction can be defined. All relationships among
source and target elements can be identified by highlighting
a grid square and displaying an arrow indicating the
relationship’s direction. The matrix is a convenient method
of visualizing relationships quickly and definitively. It also

enables users to create, modify and delete relationships
between elements with a single mouse click - another quick
way to create complex sets of element relationships with a
minimum of effort.

Nevertheless, the literature-based research has shown
that the traceability matrix is a useful template to trace if a
certain requirement is covered by a single or more
components. We argue that a simple representation of
linkage alone is not enough. For instance, it cannot be
derived from the matrix how important a system component
is for implementation (i.e., when transforming system
components to design artifacts, or when coding) an aspect
which is also relevant in agile software development. For
instance, in Scrum [5] in order to provide a reference value
for the product owner when prioritizing stories for the
product backlog.

III. THEORETICAL APPROACH

Requirements engineers decide about how to transform
customer requirements into system requirements, i.e., they
decide on the realization of customer requirements in the
system architecture. Generally, this design step is visualized
in the traceability matrix, where the realizations can be
traced (e.g., Fig. 1, the customer requirements form the
source and the system requirements or components the target
nodes). The better this task is guided and monitored, the
fewer problems (e.g., over-engineering) will occur during
implementation which leads to time and cost savings.

Therefore, we propose to use the engineers’ informal
knowledge of system design specification by introducing a
cognitive heuristic in form of a relevance weighting
procedure. This procedure is based on an intuitive mental
judgement made by the engineers during the design process.
We adapt the approach from concepts, which we have
introduced in [8]. In our current approach, the requirements
engineer determines the importance of a linkage (source
target) by annotating the linkage with a weighting in the
range of [1, 9]. The weighting is mainly based on his/her
intuition (or cognitive perspective [8]) of the system
component's relevance in order to cover a certain customer
requirement.

Figure 2. Design Decision Traceability Grid (DDT-Grid).

513Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

In the tool-guided procedure (i.e., the engineer is
prompted by the system), he/she affixes a relevance
weighting on each realization in the matrix. This quantified
mental judgement is made visible in an enhanced form of the
traceability matrix, which we denote as design decision
traceability grid (DDT-grid) (e.g., Fig. 2). We introduce this
DDT-grid as a controlling instrument for engineers in the
form of a weighted decision matrix, where the engineer can
reflect on the made decisions and its alternatives at any time
during the design process. The requirements engineer can
distinguish among three weighting classes (i) high relevance
in the range of [7, 9], (ii) middle relevance in the range of [4,
6], and (iii) low relevance in the range of [1, 3] (e.g., Fig. 2).

The cognitive heuristic can be classified as post-
requirements specification traceability method. The system
components level of utility or (functional) degree of
fulfillment is automatically computed by an algorithm by
which additionally the customer requirements'
prioritizations, made by the stakeholders, are taken into
account. The computation is based on (i) the number of
covered customer requirements, (ii) their prioritization, and
(iii) the relevance weightings of linkage. For each system
component a relative utility value is expressed as a
percentage, which constitutes the component's importance in
the entire system architecture and thereby, a pairwise
comparison between components is facilitated. On the one
hand, also alternative modeling solutions of equal value can
be identified, and on the other hand system components with
a low level of importance can be easily detected in order to
minimize a possible over-engineering risk even before the
next step in the system’s development process will be started
(i.e. when transforming system requirements to design
artifacts, or when coding).

The introduced cognitive-based approach to formalize
the requirements engineers’ informal knowledge by an
importance weighting metric and turning this knowledge into
operating figures provides a new dimension of requirements
traceability controlling at the early stage of requirements
management.

IV. EXPECTED RESULTS

Making informal design knowledge explicit (i.e., visible
to users by the DDT-grid) would favorably impact the
interpretation of the system’s architecture. This means that
the DDT-grid forms an innovative communication base for
system architects and customers. For example, by identifying
what are the critical, highly relevant system components in
the model in order to assess the developers’ efforts when
implementing them. Additionally, stakeholders can track, at
any time, how the scoring of system artifacts is affected
when customers vary the prioritization, delete, or add
requirements. Thus, the cognitive-based approach makes a
contribution to the fulfillment of an efficient requirements
negotiation as proposed in [1]. The DDT-grid and the
calculated metrics provide a kind of cognitive map for
engineers to rethink about their design decisions (e.g., to
check if they are on the “right way”). Each map represents a
personal view of prioritized solutions of the system. By
comparing these maps a hint to a different system

understanding can be provided. Additionally, a quick
overview can be given through the highlighted visualization
in the DDT-grid by which different weightings of
realizations are made visible. By describing and discussing
its own view, a common understanding between stakeholders
can be established.

ACKNOWLEDGMENT

The introduced approach will be realized in the course of
the TraCo project. TraCo (Traceability Controlling) is
supported and promoted by the Austrian Research Promotion
Agency (FFG) by the funding program BRIDGE. Launch of
the 18-month project is October 01 2012. The cooperation
partner in this FFG - project is SparxSystems Software
GmbH based in Vienna. SparxSystems specializes in high-
performance and scalable visual modeling tools for planning,
design and construction of software intensive systems.
TraCo is to be conceptualized as plug-in for the core product
of the company, the Enterprise Architect, and it is to be
implemented as a component of the business logic of
EnArWEB (Enterprise Architect in the WEB), where the
Enterprise Architect is used as repository.

REFERENCES
[1] L. Cao and B. Ramesh, “Agile Requirements Engineering

Practices: An Empirical Study,” IEEE Software, vol. 25,
IEEE Computer Society, January/February 2008, pp. 60–67,
doi: 10.1109/MS.2008.1.

[2] M. Flower, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3th edition, Addison-Wesley
Object Technology, 2003.

[3] S. Friedenthal, A. C. Moore, and R. Steiner, A Practical
Guide to SysML: The Systems Modeling Language, The
Morgan Kaufmann Omp Press, Elsevier Inc., 2012.

[4] O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” In Proceedings of the
1th International Conference on Requirements Engineering,
Colorado Springs (CO US), April 1994, pp. 94–101, doi:
10.1.1.137.5052.

[5] H. Kniberg, Scrum and XP from the Trenches, How we do
Scrum, Enterprise Software Development Series, C4Media
Inc, 2007.

[6] J. Macmillan and J. R. Vosburgh, “Software Quality
Indicators,” Final Report, Scientific Systems Inc Cambridge
(MA US), September 1986, Accession Number: ADA181505.

[7] A. Mazak, M. Lanzenberger, and B. Schandl, “iweightings:
Enhancing Structure-based Ontology Alignment by Enriching
Models with Importance Weightings,” In Proceedings of the
2010 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS 10), Krakow (PL),
February 2010, IEEE Press, pp. 992–997,
doi=10.1109/CISIS.2010.164.

[8] A. Mazak, “CoMetO: A Cognitive Design Methodology for
Enhancing the Alignment Potential of Ontologies,” doctoral
thesis, Information & Software Engineering Group (ifs),
Department of Software Technology and Interactive Systems,
Vienna University of Technologie, Vienna, April 2012.

[9] K. Pohl, Requirements Engineering: Grundlagen, Prinzipien,
Techniken, 2. Auflage, dpunkt.verlag, 2008.

[10] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards,
“Requirements traceability: Theory and practice,” in Journal

514Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Annals of Software Engineering, vol. 3, J. C. Baltzer AG,
Science Publishers, January 1997, pp. 397–415.

[11] B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” in IEEE Transactions of
Software Engineering, vol. 27, January 2001, pp. 58–93.

[12] IBM, Rational DOORS version 9.2, available at
http://publib.boulder.ibm.com/infocenter/rsdp/vlr0m0/index.js
p?topic=/com.ibm.help.download.doors.doc/topics/doors_vers
ion9_2.html.

[13] D. Steinpichler and H. Kargl, “Enterprise Architect, project
management with UML and EA,” Manual revised edition for
Version 9.3, SparxSystems Software GmbH, Vienna, January
2011, available at
http://www.sparxsystems.de/?gclid=CNap8rfwr7MCFYq7zA
odxR4AXg.

515Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

