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Abstract—Support for various stakeholders (customer, project 
manager, system architect, requirements engineer) involved in 
the design and management of large software systems is 
needed since frequently, misinterpretations occur already 
when specifying customer requirements into system 
requirements. This problem is mainly caused by the various 
perspectives and intentions of the involved parties that may 
lead to diverging interpretations during said process. 
Therefore, the focus of our work in progress is on the 
requirements engineers when transforming customer 
requirements into system requirements. There is still a gap to 
trace design decisions especially at this early stage of the 
system development life cycle. We introduce a heuristic-based 
approach in order to make a contribution to bridge this gap. 
We propose to consider the requirements engineer’s “cognitive 
perspective” on traceability links by a heuristic-based 
weighting procedure that can be performed during the design 
process. We enhance the established relationship or 
traceability matrix to make it possible for requirements 
engineers to annotate their informal knowledge to the linkage 
(i.e., visualized realizations) in that matrix. 

Keywords-Requirements management; requirements 
traceability; cognitive engineering; traceability matrix; design 
decisions. 

I. INTRODUCTION 

There is a variety of stakeholders involved in large 
software projects, each having a different set of goals and 
priorities [9]. Generally, requirements are prioritized by 
stakeholders (e.g., based on the software projects’ purpose, 
certain functionalities which should be targeted by the 
system). Various methods and supporting tools exist for 
guiding this process of requirements’ prioritization. What we 
are missing is another prioritization when linking customer 
requirements to system requirements and system 
requirements to design artifacts (i.e., model components) in 
the specification task. Misinterpretations at this stage of a 
software project are resulting from misconceived or 
misvalued linking. Validation continues to be a “big pain” 
due to the lack of trusted documentation of traceability 
drives validation teams to leave no doubt (aka double or 
triple effort). There is a multitude of tools (e.g., Rational 
DOORS [12]) by which requirement lifecycle management 
is supported. Often, tools produce non- or less compelling 

documentation [13]. However, experience has shown that a 
“distributed traceability of requirements” guided by external 
tools or methods, which means that it is not integrated in the 
system’s architecture design process itself, is often error-
prone [13]. 

We propose focusing on the requirements engineers’ 
informal knowledge when design decisions are made during 
the specification task of customer requirements. According 
to the used modeling language a certain traceability link can 
be used (realization in UML [2], satisfy in SysML [3]). 
Generally, a trace chain is constructed through linking by 
which an impact analysis can be made. Mainly, such 
information is presented in form of a matrix called 
relationship matrix. In Fig. 1, which represents an excerpt of 
a relationship matrix from the tool Enterprise Architect (EA) 
[13], the linkage is visualized in form of arrows in the cells. 
This type of linking merely express for instance that Receive 
Orders is realized by two system artifacts REQ019 and 
REQ032 (e.g., Fig. 1). It cannot be derived to what extent the 
realization is proceeded, or the system requirements’ level of 
utility to fulfill this customer requirement. Generally, a 
certain customer requirement is covered by more than a 
single system component and not each component has the 
same relevance to realize that requirement within the 
system’s architecture; just as customer requirements do not 
have equal prioritizations. Thus, each system component has 
a different level of utility (relevance). 

 

 
Figure 1.  Relationship matrix in EA. 
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In the early past, methods have emerged by which 
informal knowledge of the original engineers can be 
annotated to the model itself, as for example presented in 
the field of Ontology Alignment in [7][8]. There the 
modelers’ intention involved during the design process, that 
is modeler’s cognition or cognitive perspective, is made 
visible to users. 

Currently, there is no tool support to requirements 
engineers in order to aid them to make their informal 
knowledge visible. This open issue motivated us to work on 
an heuristic-based approach to bridge the traceability gap at 
the early stage of system design that is of commercial 
interest, too. 

II. BACKGROUND 

A. Requirements Traceability 

Requirements traceability in all stages of the system 
development life cycle is an important field of requirements 
management. Gotel and Finkelstein [4] define requirements 
traceability as “the ability to describe and follow the life of a 
requirement, in both a forward and backward direction, i.e., 
from its origins, through its development and specification, 
to its subsequent deployment and use, and through periods of 
ongoing refinement and iteration in any of these phases”. 
The authors differentiate between pre-requirements 
specification (pre-RS) traceability and post-requirements 
(post-RS) specification traceability. The first refers to those 
aspects of a requirement’s life prior to inclusion in the 
specification task (e.g., when stakeholders prioritize 
requirements depending on their expectations they place on 
the system); whereas the latter refers to those aspects that 
result from inclusion in the requirement’s specification [4].  

In our work in progress, we focus on post-RS traceability 
by which system components and their relations to certain 
customer requirements are considered. Today, requirements 
traceability is a key factor in the project management of 
large-scale systems and it plays an important role in the 
quality control of software engineering processes [9]. It acts 
as an indicator to define the system’s maturity of 
development [8]. The aim is to support reliable, up to date, 
and high-quality traceability—right from the start. 

B. Requirements Traceability Matrix 

Validation pain can be reduced when using the 
traceability matrix [6]. This is a kind of “completeness 
indicator” by which the relationships among requirements 
and artifacts can be traced. It is an aid to determine the 
complexity of dependencies. There are tools by which a 
graphical as well as a textual traceability is supported to 
engineers. For example, in the tool Enterprise Architect the 
relationship matrix is a spreadsheet display of relationships 
between different sets of model elements (e.g., Fig. 1). A 
source package and a target package, the relationship type, 
and the direction can be defined. All relationships among 
source and target elements can be identified by highlighting 
a grid square and displaying an arrow indicating the 
relationship’s direction. The matrix is a convenient method 
of visualizing relationships quickly and definitively. It also 

enables users to create, modify and delete relationships 
between elements with a single mouse click - another quick 
way to create complex sets of element relationships with a 
minimum of effort.  

Nevertheless, the literature-based research has shown 
that the traceability matrix is a useful template to trace if a 
certain requirement is covered by a single or more 
components. We argue that a simple representation of 
linkage alone is not enough. For instance, it cannot be 
derived from the matrix how important a system component 
is for implementation (i.e., when transforming system 
components to design artifacts, or when coding) an aspect 
which is also relevant in agile software development. For 
instance, in Scrum [5] in order to provide a reference value 
for the product owner when prioritizing stories for the 
product backlog. 

III. THEORETICAL APPROACH 

Requirements engineers decide about how to transform 
customer requirements into system requirements, i.e., they 
decide on the realization of customer requirements in the 
system architecture. Generally, this design step is visualized 
in the traceability matrix, where the realizations can be 
traced (e.g., Fig. 1, the customer requirements form the 
source and the system requirements or components the target 
nodes). The better this task is guided and monitored, the 
fewer problems (e.g., over-engineering) will occur during 
implementation which leads to time and cost savings.  

Therefore, we propose to use the engineers’ informal 
knowledge of system design specification by introducing a 
cognitive heuristic in form of a relevance weighting 
procedure. This procedure is based on an intuitive mental 
judgement made by the engineers during the design process. 
We adapt the approach from concepts, which we have 
introduced in [8]. In our current approach, the requirements 
engineer determines the importance of a linkage (source  
target) by annotating the linkage with a weighting in the 
range of [1, 9]. The weighting is mainly based on his/her 
intuition (or cognitive perspective [8]) of the system 
component's relevance in order to cover a certain customer 
requirement. 

 

 
Figure 2.  Design Decision Traceability Grid (DDT-Grid). 
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In the tool-guided procedure (i.e., the engineer is 
prompted by the system), he/she affixes a relevance 
weighting on each realization in the matrix. This quantified 
mental judgement is made visible in an enhanced form of the 
traceability matrix, which we denote as design decision 
traceability grid (DDT-grid) (e.g., Fig. 2). We introduce this 
DDT-grid as a controlling instrument for engineers in the 
form of a weighted decision matrix, where the engineer can 
reflect on the made decisions and its alternatives at any time 
during the design process. The requirements engineer can 
distinguish among three weighting classes (i) high relevance 
in the range of [7, 9], (ii) middle relevance in the range of [4, 
6], and (iii) low relevance in the range of [1, 3] (e.g., Fig. 2). 

The cognitive heuristic can be classified as post-
requirements specification traceability method. The system 
components level of utility or (functional) degree of 
fulfillment is automatically computed by an algorithm by 
which additionally the customer requirements' 
prioritizations, made by the stakeholders, are taken into 
account. The computation is based on (i) the number of 
covered customer requirements, (ii) their prioritization, and 
(iii) the relevance weightings of linkage. For each system 
component a relative utility value is expressed as a 
percentage, which constitutes the component's importance in 
the entire system architecture and thereby, a pairwise 
comparison between components is facilitated. On the one 
hand, also alternative modeling solutions of equal value can 
be identified, and on the other hand system components with 
a low level of importance can be easily detected in order to 
minimize a possible over-engineering risk even before the 
next step in the system’s development process will be started 
(i.e. when transforming system requirements to design 
artifacts, or when coding). 

The introduced cognitive-based approach to formalize 
the requirements engineers’ informal knowledge by an 
importance weighting metric and turning this knowledge into 
operating figures provides a new dimension of requirements 
traceability controlling at the early stage of requirements 
management. 

IV. EXPECTED RESULTS 

Making informal design knowledge explicit (i.e., visible 
to users by the DDT-grid) would favorably impact the 
interpretation of the system’s architecture. This means that 
the DDT-grid forms an innovative communication base for 
system architects and customers. For example, by identifying 
what are the critical, highly relevant system components in 
the model in order to assess the developers’ efforts when 
implementing them. Additionally, stakeholders can track, at 
any time, how the scoring of system artifacts is affected 
when customers vary the prioritization, delete, or add 
requirements. Thus, the cognitive-based approach makes a 
contribution to the fulfillment of an efficient requirements 
negotiation as proposed in [1]. The DDT-grid and the 
calculated metrics provide a kind of cognitive map for 
engineers to rethink about their design decisions (e.g., to 
check if they are on the “right way”). Each map represents a 
personal view of prioritized solutions of the system. By 
comparing these maps a hint to a different system 

understanding can be provided. Additionally, a quick 
overview can be given through the highlighted visualization 
in the DDT-grid by which different weightings of 
realizations are made visible. By describing and discussing 
its own view, a common understanding between stakeholders 
can be established. 
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