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Abstract—In the course of a research project funded by the 

Austrian Research Promotion Agency (FFG), we integrate 

cognitive engineering in the field of requirements management. 

In doing so, we go in the question of how utility and quality of 

design components could be operationalized in the context of 

modeling at the design phase in a software development project. 

We named this project Traceability Controlling (TraCo). Our 

focus in TraCo is on the quality assurance of the modelers’ 

design decisions made at the phase of problem-solving and 

solution specification. For the purpose of implementing TraCo 

we choose an interdisciplinary approach. We present an 

appropriate method to ensure the level of quality of the created 

design solution already during its creation. The TraCo-method 

can be used for continuously monitoring and controlling content 

quality issues like adequacy, appropriateness, and impact. By 

using the introduced method, requirements-engineers (e.g. 

system-architects, modelers) are able to validate whether the 

design model or fine-grained the model’s design components exist 

in sufficient quality and whether these components meet the 

predetermined requirements’ prioritization (i.e. their stakeholder 

values). 

Keywords—requirements management; traceability, cognitive 

engineering; quality control; decision theory. 

I.  INTRODUCTION 

The domain of interest is the field of requirements 
traceability. Today, requirements traceability is a key factor in 
the project management of large-scale systems and it plays an 
important role in the quality control of software engineering 
processes [13]. Firstly introduced in [6], the authors 
differentiate between pre-requirements specification (pre-RS) 
traceability and post-requirements (post-RS) specification 
traceability. The first refers to those aspects of a requirement’s 
life prior to inclusion in the specification task (e.g., when 
stakeholders prioritize requirements depending on their 
expectations they place on the system); whereas the latter refers 
to those aspects that result from inclusion in the requirement’s 
specification [6]. In our approach, we focus on post-RS 
traceability by which system or design components and their 
relations to certain customer requirements are considered. Our 
objective is to support reliable, up to date and high-quality 
traceability right from the start. 

In the course of the opening session IKT 2012, organized 
by the FFG [17], the key note speaker Manfred Broy 
propagated that the emphasis should be placed on an early 
starting quality control in requirements engineering, since 

software-intensive systems become increasingly complex [18]. 
Also, other research colleagues are demanding an requirements' 
quality control from the very beginning [12][2][7][16]. They 
state that an early detection of design errors helps to prevent 
"developer gold plating" also known as "over-engineering" 
[12]. These design pitfalls lead to a more complex 
architecture/design model that is more prone to error, which 
negatively affect time and costs of development [16]. Customer 
requirements be “over anxious” and this causes additional 
costs. Often, customers are not willing to pay extra costs since 
the extra effort was not required. 

Often design errors, made in the early stages of system 
design, are detected posteriori in subsequent project phases or 
in the first place in the operation of the system [12]. In these 
subsequent project phases, requirements which have been 
implemented incorrectly or incompletely are interpreted by 
developers as subjective coherent, since they rely on the 
requirement engineers' work. In the final stage, the system 
created doesn't meet the stakeholders' expectations. Frequently, 
misinterpretations among system architects/modelers and 
stakeholders already occur when transforming customer 
requirements into system requirements or design components 
resulting from misconceived or misvalued linking. This 
problem is mainly caused by various perspectives, priorities 
and intentions of the parties involved which may lead to 
diverging interpretations during said process [13]. 
Unfortunately, extensive quality analysis only found little 
acceptance in the face of high time and cost pressure just at the 
beginning of a project. Particularly in large software projects, it 
is very difficult to control software quality in addition to time 
and budget, since continuous and comprehensive feedback is 
often missing on the current status of the project [16]. 

In recent years, agile approaches (e.g. Scrum, Extreme 
Programming [8]) have been introduced to avoid expensive 
trouble shooting in the final phase of a project. Agile 
approaches are aiming for an early customer feedback, often 
based on early prototyping. Based on the feedback, 
requirements may be changed. However, working with agile 
processes does not mean developing without a plan. 

To addressing these aforementioned problems, we 
introduce a heuristic-based approach for visualizing the 
engineers’ design decisions in relation to certain (quality-
based) contexts in order to make them transparent and 
traceable for stakeholders (e.g. project manager and customer). 
We named this approach Traceability Controlling (TraCo) and 



introduce it at the operational level where system architects or 
modelers realize customer requirements in the design model. 
The TraCo-method can be used by modelers for continuously 
reviewing content quality issues such as adequacy, 
appropriateness, and impact. In TraCo, the end-user's 
perspective is foresighted involved at various points in the 
design process. For this purpose, we implement (i) a procedure 
adapted from the concept of Cognitive Walkthrough, an 
inspection technique of usability testing [23], (ii) the concept of 
the Reflective Practitioner introduced by Schön [20] and (iii) 
the utility analysis, a compositional method of the field of 
decision theory. 

The core idea is to formalize tacit (non-formal) knowledge 
(i.e. the engineers' intuition when modeling) by explicitly pour 
this situational context-related knowledge into numbers and to 
store it as meta-information in the model. That meta-
information facilitates the comparability among engineers and 
their individual views when modeling. In TraCo, design 
decisions related to certain contexts are analyzed based on 
human perception. The property measured in the particular 
context of perception is the relevance of a realization (linking) 
between a customer requirement and design components. This 
means that the modeler quantifies the quality-related contextual 
effect (e.g. functional suitability, performance efficiency, 
usability) a linking has in his expert opinion. 

In this sense, TraCo fits in agile approaches by using 
prioritized customer requirements (e.g. provided by Scrum [8]) 
as input for the extended linking among requirements and 
design artifacts. The calculated ratios (e.g. Fig. 3, Fig. 4) help 
stakeholders (i.e. all people directly and indirectly involved in 
the project) to get a better understanding of the requirements 
and their implementation. This will help to provide a common 
understanding of the project’s objectives and it leads to a 
ranking of the relevance of design components (modules) to be 
developed. The stakeholders’ feedback of the early prototype is 
to be taken into account in the computations. That enables 
modelers to continuously monitor and control individual design 
components and gives stakeholders and customers a quick 
overview of the relevant parts of the architecture model which 
in turn leads to highest customer satisfaction. 

This paper is organized as follows: the domain of interest, a 
short introduction to the main problem and a brief insight in 
our approach are discussed in Section 1. Section 2 presents 
background knowledge and the theoretical basis of our 
contribution. Section 3 describes the theoretical approach and 
the method realized in the TraCo-project. Finally, we present 
our conclusion in Section 4. 

II. BACKGROUND 

A. Cognitive Perspective in Modeling 

In [1] the authors refer to the existence of a cognitive 
perspective in the field of knowledge base (i.e. ontology) 
engineering. They state that this perspective “is very important 
in the analysis of what is generally called an intentional 
context” [1]. In previous works in the field of ontology 
engineering and alignment [9][10], we distinguish between 
formal design decisions and non-formal ones. We relate formal 

decisions to the modelers’ logical perspective and non-formal 
decisions to their cognitive perspective. The logical view posits 
the kind of knowledge modelers have when describing the 
concepts of a domain well-formed by using the syntax and 
semantics of a language (e.g. OWL DL’s necessary and 
sufficient conditions [24]); whereas the usage of the language 
in certain contexts, which the use-conditional meaning of 
semantics is meant, is based on the modelers’ cognitive 
perspective [11]. Thereby, the focus is on the importance of a 
decision that cannot be detected by truth condition. 

Also surveys have shown that design decisions are only to a 
small extent logical and deductive driven when describing a 
domain of interest [3][14][7]. Based on these surveys and 
previous work in [11], the author presents a Cognitive Design 
Methodology (CoMetO) in the field of Ontology Alignment. 
The objective in CoMetO is to provide users–in combination 
with model-based semantics–a “complete package” for 
meaning interpretation as input in the alignment process. The 
author introduces an alignment support that already starts when 
developing ontologies (i.e. in ontology engineering). In her 
approach, the modelers’ cognitive perspective on the concepts 
of a domain to be described and certain contexts are taken into 
account. In CoMetO, ontology engineers determine the 
contextual effects of logical statements in the domain 
description. For this purpose, she adapts the relevance-based 
inferential model of verbal communication [22] for 
supplementing the ontology’s rational structure with context-
based (cognitive) semantics. She implements a method by 
which the importance of ontology entities can be evaluated 
based on their usage in certain (domain- and modeling-related) 
contexts. The methodology introduced in CoMetO makes it 
feasible to visualize heterogeneities among entities of two 
ontologies to users prior to starting an alignment process.  

B. Requirements Traceability Matrix 

Generally, validation pain can be reduced when using a 
relationship matrix by which a traceability view is facilitated 
during design [15]. The relationship matrix is a kind of 
"completeness indicator" by which the relationships among 
requirements and design components can be traced. According 
to the used modeling language a certain traceability link can be 
used (realization in UML [4], satisfy in SysML [5]). There is a 
multitude of tools (e.g. Rational DOORS [19]) by which 

Fig. 1. Relationship matrix in the tool Enterprise Architect (EA) 



requirement lifecycle management is supported. There are tools 
available by which graphical as well as textual traceability are 
supported. Often, tools produce non- or less compelling 
documentation [15].  

Fig. 1, shows an example of an excerpt of a relationship 
matrix from the tool Enterprise Architect (EA) [15]. In the EA-
tool, the template of the relationship matrix has the form of a 
spreadsheet where the relationships between different sets of 
model elements can be visualized. Users can define the 
direction for displaying the source and target packages and the 
relationship type. All linkings among source and target 
elements can be identified by highlighting a grid square and 
displaying an arrow indicating the direction of the relationship. 

The matrix is a convenient method of visualizing 
relationships quickly and definitely. It guides users to create, 
modify and delete relationships between elements with a single 
mouse click which is another quick way to create complex sets 
of element relationships with a minimum of effort. The matrix 
is an aid in order to trace which customer requirements are to 
be implemented by which design components. Based on this, 
the modeler can make sure that all customer requirements are 
taken into account in the solution (fulfillment of completeness) 
and he can check whether the requirements are jointly 
satisfiable (fulfillment of consistency). The matrix helps to keep 
the amount of requirements manageable and to track linkings 
comprehensible. 

 

We argue that a simple representation of linkage alone is 
not enough for a sufficient quality control at this stage of 
system design. For instance, there is a lack to verify to what 
extent the realization has proceeded, or to specify the design 
components’ level of utility to fulfill customer requirements by 
additionally taking into account the stakeholder values (i.e. 
requirements’ prioritization). In other words, the relevance of 
the linking from an “integration perspective”–with regard to 

the substantive aspects of quality such as impact, adequacy, 
and appropriateness–is ignored. This means that the modeler’s 
tacit and context-based knowledge, which he has in mind when 
modeling, cannot be recorded and therefore is lost. Currently, 
this knowledge is stored implicitly in the design model’s 
structure and therefore not transparent to other stakeholders–
indirectly as well as directly–involved in the design process 
(e.g. project manager, customer, developer). 

III. THEORETICAL APPROACH 

Our aim is to implement an "intentional model" in the tool 
Enterprise Architect. The effect size of this model is cognitive 
processes. In our approach, the modeler continuously goes in 
reflection with the model’s design components and the “utility” 
of their usage. Thereby, he evaluates each linking among 
customer requirements and design components referring to its 
effect in certain quality-based contexts regarding the actual use 
of the system. That supports modelers to the effect that they 
have in mind the fulfillment of quality-properties of the system 
(e.g. security, usability, maintainability) already during design. 

We present a technique which facilitates the 
systematization and (non-monetary) quantification of thought 
processes during modeling in order to make the modelers’ 
intention (their cognitive perspective) explicit to stakeholders. 
We provide engineers an aid so that they are able to express 
their internal mental state at this phase of development. For this 
purpose, we implement a formalism based on the concepts of 
Cognitive Function Analysis introduced by Boy [21]. Cognitive 
Functions attempt to characterize the activity of a human 
involved in the execution of task. They are defined by 
attributes related to the transformation of a task into an activity 
[21]. In his work he presents the AUTO-pyramid where an 
artifact, a user-profile, a task and an organizational 
environment are interlinked and so the processes that take place 
between them. In TraCo, the modelers' situational (tacit) 

Fig. 2. EA-Relationship matrix and Weighted Design Decision Matrix 



knowledge–their modeling focus–is formalized and explicitly 
poured into numbers by contextual constraints or cognitive 
markers. 

Software architects decide about how to transform 
customer requirements into design components. Generally, this 
design step is visualized in the traceability matrix in which the 
realizations can be traced (e.g. Fig. 1). The better this task is 
monitored and controlled, the fewer problems will occur during 
implementation which leads to time and cost savings. Several 
solutions are based on a design decision. This means that there 
are several variations to model a customer requirement. Thus, 
not all design components are equally important in the model 
equally as customer requirements have different stakeholder 
values. We take this circumstance into account by the 
aforementioned cognitive constraints, which are manually 
assigned in form of relevance ratings on each linking. The 
ratings are based on an intuitive mental judgement made by the 
modelers. The weighting assessment is directly carried out 
when transforming customer requirements into design 
components. The procedure is automatically initiated by the 
system when a realization is generated. The modeler is 
prompted by the system to select a predefined context or to 
create a new one and to assign a relevance rating in form of 
points. The modeler can distinguish between three classes (i) 
“high relevant” in the range of [7, 9], (ii) “relevant” in the 
range of [4, 6], and (iii) “weakly relevant” in the range of [1, 
3] (e.g. Fig. 2, on the right side and Fig. 3). 

In the EA-modeling tool the relationship of which design 
components realize which customer requirements is 
represented using the UML realization link (e.g. Fig. 2, on the 
left side visualized by the arrow icon). Each decision situation 
when linking customer requirements with design components 
forms the starting point for our cognitive walkthrough. This 
evaluation procedure, similar to the reflective practitioner [20], 
forces modelers to an intensive analysis with the quality 
aspects of the model along the design process. They can 
continuously monitor the made decisions and its alternatives at 
any time. By doing so, the consequences and implications of 
design decisions can be detected early and modified as needed. 
Moreover, they can track how the scoring of design artifacts is 
affected when stakeholders vary their prioritization, or delete, 
or add new requirements (fulfillment of impact). 

A. Method 

The modelers’ contextualized design knowledge is annotated 
by contextual constraints (cognitive markers) in form of 
relevance ratings and implemented as tagged values. This 
context-based knowledge itself is a data structure storing 
contextual constraints consisting of ID, source, context facet, 
context criterion, rating object, weighting and description 
directly in the EA-repository.  

Fig. 3, shows the rating object (ock) which is a key value 
pair consisting of the unique IDs of a customer requirement 
(KAFc, foreign key of the requirement c) and a design 
component (DElk, foreign key of the artifact k). This means, 

Fig. 3. Weighted Design Decision Matrix (WDDM) 



we couple the modeler’s perspective with the customer’s 
perspective also taking into account the stakeholder values, 
using a relative weighting. The relative weighting is a ratio 
value that is calculated from the predetermined customer 
prioritization (this information for each KAF is received from 
the EA-repository) and the previously conducted relevance 
ratings (in respect of each row of the matrix in which the 
current KAF is a part). 

The weighting assessment is carried out directly by the 
modeler. He is prompted by the system to select a predefined 
context (based on the standard ISO/IEC 25010 [25]) or to 
create a new one and to affix a value from a 9-point rating 
scale. The relevance of semantics underlying the cognitive 
walkthrough-based evaluation means: the more relevant a 
design solution is with respect to a given context, the greater is 
its contextual or quality assurance effect in the model in terms 
of the final product and its real use.  

For instance: [1, 9] is a scale of relevance (9 = highest 
relevant, 1 = weakly relevant), then annotating the rating object 
oij with 8 and oik with 3 implies that oij has more contextual 
effect than oik. 

As a result of the rating procedure, the engineer receives a 
matrix (e.g. Fig. 3) reflecting the design choices expanded by a 
“relevance view”. We implement this matrix–the Weighted 
Design Decision Matrix (WDDM)–in the EA-tool to foster a 
better communication among (directly and indirectly involved) 
stakeholders during the design phase. If the matrix is filled by 
multiple modelers a map of different cognitive perspectives in 
different contexts is obtained to them, so that they can validate 
a common understanding of different modeling views. The 
degree of fulfillment is an indicator of the extent (in percent) to 
which a certain quality-related context (e.g. functionality, 
usability) was included in the modeling. Additionally, 

stakeholders receive valuable metrics (e.g. Fig. 4) by which 
they are able to estimate the impact on the design model and its 
components when changings of customer requirements occur 
(e.g. delete, add requirements or change its weights). 

Fig. 4, presents the Design Decision Traceability Grid 
(DDTG) where the design components’ level of utility (LoU)–
an importance indicator–is automatically computed and 
continuously updated with the WDDM by an algorithm based 
on (i) the number of modeled customer requirements (KAFs), 
(ii) their initial prioritization made by stakeholders, and (iii) the 
sum of relevance ratings (absolute frequency) with respect to 
each covered KAF, derived from the WDDM (e.g. Fig. 3). The 
LoU for each component is calculated as a percentage of the 
sum product. Besides a utility scoring is computed in order to 
check for the engineer if he is on the “right way”. For instance, 
he can continuously monitor and control whether low 
prioritized requirements were not modeled too detailed in the 
design model (fulfillment of adequacy). 

IV. CONCLUSION 

In the presented approach, we use the EA-relationship 
matrix for identifying the realizations among customer 
requirements and design components as well as their 
predetermined stakeholder values (e.g. Fig. 1). We extend this 
matrix to a Weighted Design Decision Matrix (e.g. Fig. 2) for 
making it feasible for modelers to quantify the realizations’ 
relevance in certain contexts, based on their cognitive 
perspective when modeling (e.g. Fig. 3). In a next step, we 
introduce the Design Decision Traceability Grid (e.g. Fig. 4). 
The values of this grid are automatically determined as a 
function of the relevance ratings of the WDDM. The relevance 
ratings as well as the stakeholder values are persisted in the 
EA-repository and the WDDM and DDTG are continuously 

Fig. 4. Design Decision Traceability Grid (DDTG) 



updated. There is a “reciprocal relationship” between these two 
controlling instruments. 

The two matrizes and the calculated metrics provide a kind 
of cognitive map for engineers to rethink about their design 
decisions during the process. Each map represents a personal 
view on parts of the design model’s solution. By comparing 
these maps a hint to a different system understanding can be 
prepared for the stakeholders involved. Additionally, they are 
aids for stakeholders to monitor and control the internal 
software quality by means of indicators (degree of fulfillment 
and level of utility). Both instruments are designed to guide 
modelers by identifying which requirements were not, or not 
enough or even transferred too detailed in the model 
(fulfillment of adequacy). Thereby, realizations can be 
identified that cause low benefit (fulfillment of 
appropriateness). As a result, a possible over-engineering risk 
can be minimized even before the implementation task starts. 
Moreover, engineers can identify significant design 
components to give them priority, e.g., as a starting point for 
the product owner in Scrum [8]. 
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